Dynamic Revenue Sharing
Santiago Balseiro¹, Max Lin², Vahab Mirrokni², Renato Paes Leme², and Song Zuò³

¹Duke University ²Google, NYC ³IIIS, Tsinghua University

The Revenue Sharing Problem

- Publishers send impressions to AdX with opportunity costs \(c \)
- AdX calls advertisers to bidding for the impressions
- Advertisers submit bids and AdX determines allocations and charges the advertisers
- AdX shares the revenue from the auctions with publishers:
 - Winner pays \(p \)
 - AdX pays \(x \) to the publisher and keeps \(p - x \)

What is the revenue sharing scheme here? Two constraints:

- The payout cannot be less than the cost: \(x \geq c \)
- AdX can take at most \(\alpha \)-fraction of the revenue: \(x \geq (1 - \alpha)p \)

Revenue Sharing Policies

Naïve policy:
- Sets a reserve price \(r = \frac{c}{1 - \alpha} \)
- Sells the impression via second price auction with this reserve
- Pays the publisher \(x = (1 - \alpha)p \)

If the impression is sold, the winner pays at least \(r \) and the payout to the publisher is at least \(c: x = (1 - \alpha)p \geq (1 - \alpha)r = c \)

Let \(b^f, b^h \) denote the highest and second-highest bids.

Let \(\Pi(r, c) \) denote the expected revenue with reserve \(r \) and cost \(c: \Pi(r, c) = E[b \mid b \geq r \cdot (\max(c, b^h) - c)] \)

Single period policy:
- Let \(r^*(c) = \arg \max \Pi(r, c) \)
- Reserve price: \(r^r(c) = \max \left\{ \frac{c}{1 - \alpha} \cdot r^*(c), r^*(0) \right\} \)
- Payout: \(p^*(c) = \max \{c, (1 - \alpha)x\} \)

This policy maximizes the profit of the AdX in all single period policies (i.e., each period is independent with each other).

Note: the AdX may take a less-than-\(\alpha \) fraction of the revenue.

Multiple period policy:
- \(\mu^* \) is the optimal Lagrange multiplier of the dual program.
- Reserve price: \(r^M(c) = r^* \left(\frac{1 - \mu^*}{1 - \mu^* (1 - \alpha)} \cdot c \right) \)
- Payout: \(p^M(c) = (1 - \mu^*)c + \mu^* (1 - \alpha)x \)

This policy maximizes the profit of the AdX in all multiple period policies, where revenue-share constraints are satisfied in expectation.

Heuristic policies:
- Variants of the multiple period policy, satisfying the revenue-share constraints for sure with some loss in profits.

Theoretical Guarantees

- Cumulative-revenue share constraint: AdX takes at most \(\alpha \)-fraction of the total revenue: \(\sum_{t=1}^T p_t(x_t) \geq (1 - \alpha) \sum_t x_t \)
- Prefix-revenue share constraint: AdX takes at most \(\alpha \)-fraction of the prefix revenue at any period: \(\sum_{t=1}^T p_t(x_t) \geq (1 - \alpha) \sum_t x_t \)

Refund policy: pay extra money at the last period to meet the cumulative-revenue share constraint

1. Determine the optimal dual variable \(\mu^* = \arg \min_{\mu \in [0,1]} \phi(\mu) \)
2. for \(t = 1, \ldots, T \) do
3. Set the reserve price \(r_t^r = r^r(\alpha^t(\mu)) \)
4. if item is sold, that is, \(b_t \geq r_t^r \) then
5. Collect the buyers’ payment \(r_t^b = \max(c_t, b_t^r) \)
6. Pay the seller \(p_t^s = (1 - \mu^*)c_t + \mu^* (1 - \alpha^t) \)
7. end if
8. end for
9. Let \(p_T^F = \sum_{t=1}^T \{ b_t \geq r_t^r \} (\mu^t(\alpha^t) - \alpha^t) \) be the floor deficit.
10. Let \(p_T^R = \sum_{t=1}^T \{ b_t \geq r_t^r \} (\mu^t(\alpha^t) - 1 - \alpha^t) \) be the revenue sharing deficit.
11. Pay the seller \(-\min\{p_T^F, p_T^R\} \)

Prefix policy: pay extra money at each period to meet the prefix-revenue share constraint

1. For any revenue sharing scheme \(\langle r^r, p^r \rangle \).
2. Let \(B \leftarrow 0 \) be the bank account of the seller.
3. for \(t = 1, \ldots, T \) do
4. Set the reserve price \(r_t = r_t^r \)
5. if item is sold, that is, \(b_t \geq r_t \) then
6. Collect the buyers’ payment \(x_t = r_t \)
7. Pay the seller \(p_t = \max(c_t, (1 - \alpha)x_t - B, p_t^s(x_t)) \)
8. Update the bank account \(B \leftarrow B + p_t^s(x_t) - (1 - \alpha)x_t \)
9. end if
10. end for

Empirical Study

- Data set: a collection of auction records
- each corresponds to a real time auction for an impression
- a seller (publisher) id + a set of bid records
- each bid record = a buyer id and the bid
- Impressions from 20 large publishers over the period of 2 days (1 day for training and 1 day for testing).
- Train: \(\mu^* \) and \(r^r(\cdot) \) are estimated using the training set.

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>0.15</th>
<th>0.20</th>
<th>0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>Profit</td>
<td>Payout</td>
<td>Match Rate</td>
</tr>
<tr>
<td>naïve</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>single</td>
<td>+1.25%</td>
<td>+1.74%</td>
<td>+0.83%</td>
</tr>
<tr>
<td>refund</td>
<td>+8.52%</td>
<td>+6.54%</td>
<td>+3.71%</td>
</tr>
<tr>
<td>prefix</td>
<td>-3.60%</td>
<td>-1.97%</td>
<td>-23.06%</td>
</tr>
<tr>
<td>hybrid</td>
<td>+3.34%</td>
<td>+5.38%</td>
<td>+4.06%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>0.15</th>
<th>0.20</th>
<th>0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy</td>
<td>Profit</td>
<td>Payout</td>
<td>Match Rate</td>
</tr>
<tr>
<td>naïve</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>single</td>
<td>+1.29%</td>
<td>+2.33%</td>
<td>+0.86%</td>
</tr>
<tr>
<td>refund</td>
<td>+9.31%</td>
<td>+9.31%</td>
<td>+8.30%</td>
</tr>
<tr>
<td>prefix</td>
<td>-2.13%</td>
<td>-0.68%</td>
<td>-21.57%</td>
</tr>
<tr>
<td>hybrid</td>
<td>+3.81%</td>
<td>+5.99%</td>
<td>+5.26%</td>
</tr>
</tbody>
</table>

Table 1: Performance of the policies for different \(\alpha \)'s.